LM25085 Evaluation Board

National Semiconductor Application Note 1905 Dennis Morgan November 12, 2008

Introduction

The LM25085EVAL evaluation board provides the design engineer with a fully functional buck regulator, employing the LM25085 PFET switching controller which uses the constant on-time (COT) operating principle. This evaluation board provides a 5V output over an input range of 5.5V to 42V. The circuit delivers load currents to 5A, with current limit set at \approx 8.2A. The board is populated with all components except C5. Its use is described later in this document.

The board's specification are:

- Input Voltage: 5.5V to 42V
- Output Voltage: 5V
- Maximum load current: 5A for V_{IN} >9V
- Minimum load current: 0A
- Current Limit Threshold: ≊8.2A
- Measured Efficiency: 97.2% (V_{IN} = 5.5V, I_{OUT} = 0.6Amps)
- Nominal Switching Frequency: 300 kHz
- Size: 3.1 in. x 1.5 in. x 0.78 in

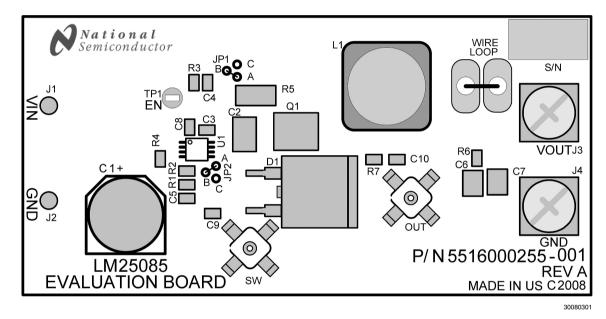


FIGURE 1. Evaluation Board - Top Side

Theory of Operation

Refer to the evaluation board schematic in Figure 7. When the circuit is in regulation, the on-time at the PGATE output pin is determined by R4 and the voltage at VIN according to the equation:

t_{ON} =
$$\frac{1.45 \text{ x } 10^{-7} \text{ x } (\text{R4} + 1.4)}{\text{V}_{\text{IN}} - 1.56\text{V} + \text{R4/3167}}$$
 + 50 ns

where R4 is in kohms. The on-time at the SW node (junction of Q1, L1 and D1) is longer than the above calculated on-time due to the difference of the turn-on and turn-off delay of Q1. The data sheet for the Si7465 PFET indicates a typical turn-on delay of 8 ns, and a typical turn-off delay of 65 ns, resulting in an additional 57 ns at the SW node. The SW on-time of this evaluation board ranges from \approx 3479 ns at V_{IN} = 5.5V, to \approx 438 ns at V_{IN} = 42V. The on-time varies inversely with V_{IN} to maintain a nearly constant switching frequency.

During the off-time, the load current is supplied by the inductor and the output capacitor (C6, C7). When the output voltage falls sufficiently that the voltage at FB is below the reference voltage (1.25V), the regulation comparator initiates a new ontime period. For stable, fixed frequency operation, a minimum of 25 mV of ripple is required at the FB pin to switch the regulation comparator. The required ripple is generated by R7 and C10, and supplied to the FB pin via C9.

The current limit threshold is set by the sense resistor (R5), and R3 at the ADJ pin, and is \approx 8.2A on this board. A current sink at the ADJ pin sets a constant voltage across R3. When the voltage across R5 exceeds the voltage across R3 the current limit comparator switches to shut off Q1, and the LM25085 forces a longer-than-normal off-time. The long off-time is a function of the input voltage (V_{IN}) and the voltage at the FB pin, and is necessary to allow the inductor current to decrease at least as much, if not more, than the current increase which occurred during the on-time.

The circuit may be shutdown at any time by grounding the Enable test point (EN, TP1). Removing the ground connection allows normal operation to resume.

Refer to the LM25085 data sheet for a detailed block diagram, and a complete description of the various functional blocks.

Board Layout and Probing

The pictorial in Figure 1 shows the placement of the circuit components. The following should be kept in mind when the board is powered:

1) When operating at high input voltage and continuous conduction mode forced air flow is necessary to prevent overheating of the LM25085 controller.

2) When operating at high load current forced air flow may be necessary to prevent overheating of Q1, D1, and L1. These components may be hot to the touch.

3) Use CAUTION when probing the circuit at high input voltages to prevent injury, as well as possible damage to the circuit.

4) At maximum load current (5A), the wire size and length used to connect the source voltage, and the load, becomes important. Ensure there is not a significant drop in the wires supplying the input current and the load current.

Board Connection/Start-up

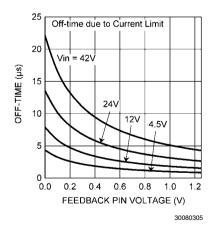
The input connections are made to the J1 (+) and J2 (-) connectors. The load is connected to the J3 (VOUT) and J4 (GND) terminals. Ensure the wires are adequately sized for the intended load current. Before start-up a voltmeter should be connected to the input terminals, and one to the output terminals. The load current should be monitored with an ammeter or a current probe. It is recommended that the input voltage be increased gradually to 4.5V, at which time the output voltage should be slightly less than 4.5V, depending on the load current. The output is regulated at 5V when the input voltage is increased above 5V. If the output voltage is correct, then increase the input voltage as desired and proceed with evaluating the circuit. DO NOT EXCEED 45V AT VIN.

Load Current Derating

Although the maximum load current for this evaluation board is specified as 5A, the data sheet for the Si7465 PFET specifies a maximum continuous current of 3.2A. Since the input current, which is the average current though Q1, increases as the input voltage is decreased, the load current must be derated at low input voltage. Please refer to the graph "Maximum Load Current Derating" below.

Operating at Low Voltage

When the input voltage is less than 5V the PFET (Q1) is on continuously (100% duty cycle), and the output voltage is equal to the input voltage, minus voltage drops across the sense resistor, Q1 and the inductor. As the input voltage is increased above 5V switching commences at the PGATE pin and the SW node as the LM25085 regulates the output at 5V. Since the LM25085 does not have a required minimum off-time, the circuit transitions smoothly from 100% duty cycle to a regulated output.


Current Limit

The LM25085 peak current limit detection operates by sensing the voltage across either the $R_{DS(ON)}$ of Q1, or a sense resistor (R5), during the on-time and comparing it to the voltage across R3 at the ADJ pin. The current limit threshold is reached when the sensed voltage exceeds the voltage across R3. When current limit is reached Q1 is immediately switched off. The current limit function is much more accurate and stable over temperature when a sense resistor is used. The R_{DS}_(ON) of a MOSFET has a wide process variation and a large temperature coefficient.

Current sensing is disabled for a blanking time of ≈ 100 ns at the beginning of each on-time to prevent false triggering of the current limit comparator due to leading edge current spikes. After Q1 is turned off due to current limit detection, Q1 is held off for a longer-than-normal off-time. The extended off-time is a function of the input voltage and the voltage at the FB pin, as shown below in the graph "Current Limit Off-time vs. V_{IN} and V_{FB}". The current limit off-time can be calculated from the following:

$$t_{\text{OFF(CL)}} = \frac{4 \times 10^{-6} \times ((V_{\text{IN}}/31) + 0.15)}{(V_{\text{ER}} \times 0.93) + 0.28V}$$

The longer-than-normal forced off-time allows the inductor current to decrease to a low level before the next on-time. This cycle-by-cycle monitoring, followed by a long forced off-time, provides effective protection from output load faults over a wide range of operating conditions.

A) Sense resistor method – This evaluation board is supplied configured for the sense resistor method of current limit detection. Jumpers A-B are in place at both jumper locations (JP1, JP2), which connects the ADJ pin resistor (R3) and the

ISEN pin across the sense resistor (R5). If the voltage across R5 exceeds the voltage across R3 during the on-time, the current limit comparator switches to turn off Q1. The voltage across R3 is set by an internal 40 μ A current sink at the ADJ pin. The current at which the current limit comparator switches is calculated from:

$$I_{CL} = 40 \ \mu A \ x \ R3/R5$$
 (1)

With R5 = 10 m Ω and R3 = 2.05 k Ω , the nominal current limit threshold calculates to 8.2A. Since that is the peak of the inductor current waveform, the load current is equal to that peak value minus one half the ripple current amplitude. At Vin = 5.5V, the ripple amplitude is \approx 116 mAp-p, and the load current at current limit is equal to 8.14 A. At Vin = 42V, the ripple amplitude is \approx 1080 mAp-p, and the load current at current limit is equal to \approx 7.66A.

Using the tolerances for the ADJ pin current and the current limit comparator offset, the maximum current limit threshold calculates to:

$$I_{CL(max)} = \frac{(2.05 \text{ k}\Omega \text{ x} 48 \text{ }\mu\text{A}) + 9 \text{ mV}}{0.01\Omega} = 10.74\text{A}$$

and the load current at current limit calculates to 10.7A at 5.5V, and 10.2A at 42V. The minimum current limit thresholds calculate to:

$$_{\text{CL(min)}} = \frac{(2.05 \text{ k}\Omega \text{ x } 32 \text{ }\mu\text{A}) - 9 \text{ mV}}{0.01\Omega} = 5.66\text{A}$$

and the load current at current limit calculates to 5.6A at 5.5V, and 5.12A at 42V.

To change the current limit threshold the value for R5 should be chosen to achieve 50 mV to 100 mV across it at current limit, staying within the practical limitations of power dissipation and physical size of the resistor. A larger value for R5 reduces the effects of the current limit comparator offset, but at the expense of higher power dissipation. After selecting the value for R5, calculate the value for R3 by rearranging Equation 1 above. See the Applications Information section of the LM25085 data sheet for a procedure to account for ripple current amplitude and tolerances when selecting the resistor for the ADJ pin.

B) Q1 R_{DS(ON)} method – To configure the evaluation board to use the R_{DS(ON)} of Q1 for current limit detection, move the jumpers at both JP1 and JP2 from the A-B position to the B-C position. This change connects the ADJ pin resistor (R3) and the ISEN pin across Q1. Since the sense resistance is now the R_{DS(ON)} of Q1, R3 must be changed. The data sheet for the Si7465 PFET lists the typical R_{DS(ON)} as 51 m Ω at V_{GS} = 10V, and 64 m Ω at V_{GS} = 4.5V. Therefore, the R_{DS}(ON) is estimated to be nominally 57 m Ω at V_{GS} = 7.7V. To achieve the same nominal current limit threshold as above (8.2A), using Equation 6 in the data sheet R3 calculates to:

$$R3 = \frac{8.2A \times 0.057\Omega}{40 \ \mu A} = 11.7 \ k\Omega$$

The load current is equal to the current limit threshold minus half the current ripple amplitude. R3 can be changed to set other current limit detection thresholds.

Output Ripple Control

The LM25085 requires a minimum of 25 mVp-p ripple at the FB pin, in phase with the switching waveform at the SW node, for proper operation. On this evaluation board, the required ripple is generated by R7, C9, and C10, allowing the ripple at V_{OUT} to be kept to a minimum, as described in option A below. Alternatively, the required ripple at the FB pin can be supplied from ripple generated at V_{OUT} and passed through the feedback resistors, as described in options B and C below, using one or two less external components.

A) Minimum Output Ripple: This evaluation board is supplied configured for minimum ripple at V_{OUT} by using components R7, C9 and C10. The ripple voltage required by the FB pin is generated by R7 and C10 since the SW node switches from \cong -1V to V_{IN} , and the right end of C10 is a virtual ground. The values for R7 and C10 are chosen to generate a 25-40 mVp-p triangle waveform at their junction. That triangle wave is then coupled to the FB pin through C9. The following procedure is used to calculate values for R7, C9 and C10:

1) Calculate the voltage V_A :

$$V_{A} = V_{OUT} - (V_{SW} \times (1 - (V_{OUT}/V_{IN(min)})))$$

where V_{SW} is the absolute value of the voltage at the SW node during the off-time, typically 0.5V to 1V depending on the diode, and V_{IN} is the minimum input voltage. Using a typical value of 0.65V for $V_{SW},\,V_A$ calculates to 4.94V. This is the approximate DC voltage at the R7/C10 junction, and is used in the next equation.

2) Calculate the R7xC10 product:

$$R7 \times C10 = \frac{(V_{IN} - V_A) \times t_{ON}}{\Delta V}$$

where t_{ON} is the maximum on-time (\approx 3479 ns), V_{IN} is the minimum input voltage, and ΔV is the desired ripple amplitude at the R7/C10 junction, 25 mVp-p for this example.

R7 x C10 =
$$\frac{(5.5V - 4.94V) \times 3479 \text{ ns}}{0.025V}$$
 = 7.79 x 10⁻⁵

R7 and C10 are then chosen from standard value components to satisfy the above product. On this evaluation board, C10 is set at 3300 pF. R7 calculate to be 23.6 k Ω , and a standard value 23.2 k Ω resistor is used. C9 is chosen to be 0.01 μ F, large compared to C10. The circuit as supplied on this EVB is shown in Figure 4.

The output ripple, which ranges from ≈10 mVp-p at V_{IN} = 5.5V to ≈28 mVp-p at V_{IN} = 42V, is determined primarily by the ESR of the output capacitance (C6, C7), and the inductor's ripple current, which ranges from 116 mAp-p to 1080 mAp-p over the input voltage range. See Figure 11.

www.national.com

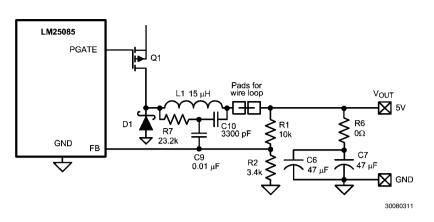


FIGURE 4. Minimum Ripple Using R7, C9, C10

B) Reduced Ripple Level Configuration: This configuration generates more ripple at V_{OUT} than the above configuration, but uses one less capacitor. If some ripple is acceptable in the application, this configuration is slightly more economical, and simpler. R6 and C5 are used instead of R7, C9 and C10, as shown in Figure 5.

Ripple is generated at V_{OUT} as the inductor's ripple current flows through R6, and that ripple voltage is passed to the FB pin via C5. The ripple at V_{OUT} can be set as low as 25 mVp-p since it is not attenuated by R1 and R2. The minimum value for R6 is calculated from:

$$R6 = \frac{25 \text{ mV}}{I_{OR(min)}}$$

where $I_{OR(min)}$ is the minimum inductor's ripple current, which occurs at minimum input voltage, and is 116 mAp-p at 5.5V. The minimum value for R6 calculates to 0.22 ohms. Using a standard value 0.27 Ω resistor for R6, the ripple at V_{OUT} ranges from 31 mVp-p to 292 mVp-p over the input voltage range. See Figure 11.

The minimum value for C5 is determined from:

$$C5 = \frac{3 \times t_{ON(max)}}{R1//R2}$$

Where $t_{ON(max)}$ is the maximum on-time, 3479 ns in this evaluation board. The minimum value for C5 calculates to 4113 pF.

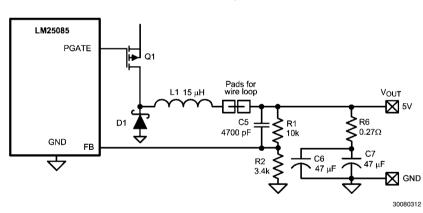
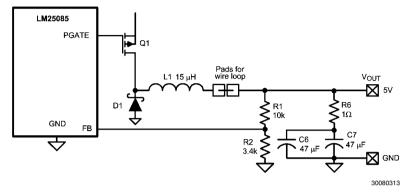


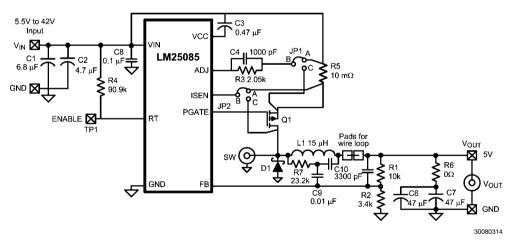
FIGURE 5. Reduced Ripple Configuration

C) Lowest Cost Configuration: This configuration is the same as option B above, but with C5 removed. The ripple at the FB pin is attenuated from that at V_{OUT} by the feedback resistors (R1, R2). Since $\geq 25 \text{ mVp-p}$ are required at the FB pin, R6 is chosen to generate $\geq 100 \text{ mV}$ at V_{OUT} . Since the minimum ripple current in this circuit is 116 mAp-p the mini-

mum value for R6 calculates to 0.86 ohms. Using a standard value 1.0 ohms resistor for R6, the ripple at V_{OUT} ranges from \cong 116 mVp-p to \cong 1080 mVp-p over the input voltage range. See Figure 11. If the application can accept this ripple level, this is the most economical solution. The circuit is shown in Figure 6.

AN-1905




FIGURE 6. Lowest Cost Configuration

Monitor The Inductor Current

The inductor's current can be monitored or viewed on a scope with a current probe. Remove the jumper from the WIRE LOOP pads, and install an appropriate current loop across the pads. In this way the inductor's ripple current and peak current can be accurately determined.

Scope Probe Adapters

Scope probe adapters are provided on this evaluation board for monitoring the waveform at the SW node, and at the circuit's output (V_{OUT}), without using the probe's ground lead which can pick up noise from the switching waveforms. The probe adapters are suitable for Tektronix P6137 or similar probes, with a 0.135" diameter.

Г

ltem	Description	Mfa Bort Numbor	Bookogo	Value	
		Mfg., Part Number	Package		
C1	Ceramic Capacitor	United Chemicon KTS101B685M55N0T00	2220	6.8 µF, 100V	
00			1010		
C2	Ceramic Capacitor	United Chemicon KTS101B475M43N0T00	1812	4.7 μF, 100V	
			0005		
C3	Ceramic Capacitor	TDK C2012X7R1C474K	0805	0.47 µF, 16V	
C4	Ceramic Capacitor	TDK C2012X7R2A102K	0805	1000 pF, 100V	
C5	Ceramic Capacitor	Unpopulated	0805		
C6, C7	Ceramic Capacitor	TDK C3225X5R0J476M	1210	47 µF, 6.3V	
C8	Ceramic Capacitor	TDK C2012X7R2A104K	0805	0.1 µF, 100V	
C9	Ceramic Capacitor	TDK C2012X7R2A103K	0805	0.01 µF, 100V	
C10	Ceramic Capacitor	TKD C2012X7R2A332K	0805	3300 pF, 100V	
D1	Schottky Diode	On Semi MBRB2060CT	D2PAK	60V, 20A	
L1	Power Inductor	Wurth XXL 7447709150	12 mm x 12 mm x 10 mm	15 µH	
Q1	P-Channel MOSFET	Vishay Si7465DP	SO-8 Power	60V, 5A	
R1	Resistor	Vishay CRCW08051002F	0805	10k	
R2	Resistor	Vishay CRCW08053401F	0805	3.4k	
R3	Resistor	Vishay CRCW08052051F	0805	2.05k	
R4	Resistor	Vishay CRCW08059092F	0805	90.9k	
R5	Resistor	Vishay WSL2010R0100F	2010	0.01 ohm,	
R6	Resistor	Vishay CRCW08050000Z	0805 0 ohms		
R7	Resistor	Vishay CRCW08052322F	0805	0805 23.2k	
U1	Switching Regulator	National Semiconductor LM25085MY	MSOP8-EP		

٦

Circuit Performance

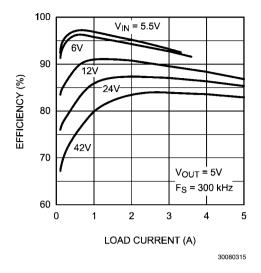


FIGURE 8. Efficiency vs Load Current

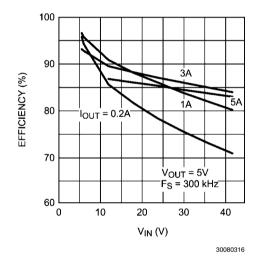


FIGURE 9. Efficiency vs Input Voltage

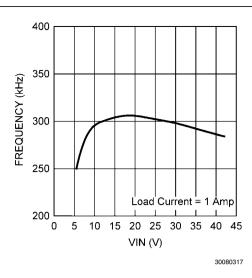
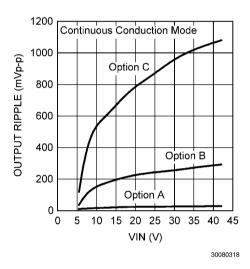



FIGURE 10. Switching Frequency vs. Input Voltage

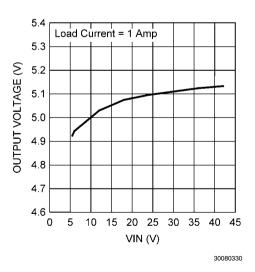
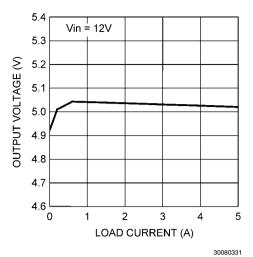
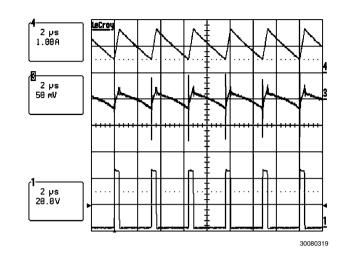
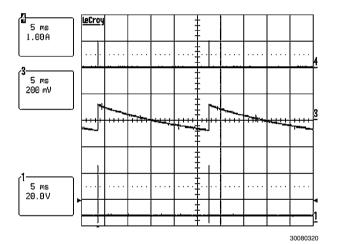
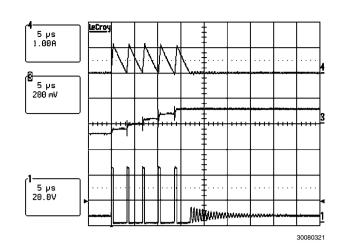


FIGURE 12. Line Regulation

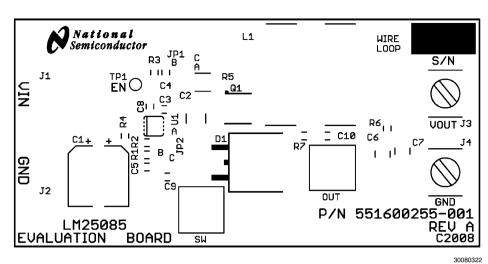



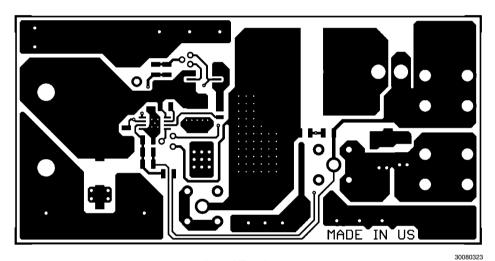

FIGURE 13. Load Regulation

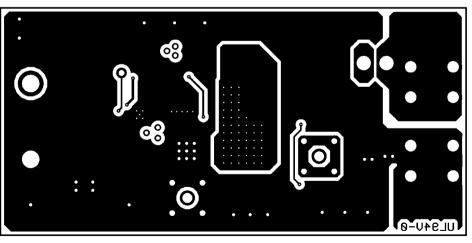
Typical Waveforms


 $\label{eq:trace} \begin{array}{l} \mbox{Trace 4 = Inductor Current} \\ \mbox{Trace 3 = V_{OUT}} \\ \mbox{Trace 1 = SW Node} \\ \mbox{V}_{IN} = 42V, \mbox{I}_{OUT} = 1\mbox{Amp} \\ \mbox{Minimum Ripple Configuration (Option A)} \end{array}$

$$\label{eq:trace} \begin{split} & \text{Trace 4} = \text{Inductor Current} \\ & \text{Trace 3} = \text{V}_{\text{OUT}} \\ & \text{Trace 1} = \text{SW Node} \\ & \text{V}_{\text{IN}} = 42\text{V}, \ \text{I}_{\text{OUT}} = 0 \end{split}$$


FIGURE 15. Discontinuous Conduction Mode


$$\label{eq:Voltage} \begin{split} & \text{Trace 4} = \text{Inductor Current} \\ & \text{Trace 3} = \text{V}_{\text{OUT}} \\ & \text{Trace 1} = \text{SW Node} \\ & \text{V}_{\text{IN}} = 42\text{V}, \ \text{I}_{\text{OUT}} = 0 \end{split}$$


PC Board Layout

Board Silkscreen

Board Top Layer

Board Bottom Layer (Viewed from Top)

30080324

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	Solar Magic®	www.national.com/solarmagic	
Wireless (PLL/VCO)	www.national.com/wireless	Analog University®	www.national.com/AU	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

AN-1905

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com